

Modeling Ionized Gas at Low Metallicities: The Wolf-Rayet Emission Nebula N76

Our Galactic Ecosystem: Opportunities and Diagnostics in the Infrared and Beyond

Elizabeth Tarantino

PhD Candidate University of Maryland - College Park

Collaborators: Alberto Bolatto, Remy Indebetouw, Karin Sandstrom, Mark Wolfire, JD Smith,, et al.

Infrared Emission Line Diagnostics

- Variety of lines, sensitive to physical conditions in the ISM
 - Extinction-free
 - Probe HII regions, photodissociation regions (PDRs), and the diffuse ionized gas
- Combining observations from a variety of IR observatories is a powerful tool
 - Synergies between Spitzer, Herschel SOFIA, and JWST

Ionized Gas Properties at Low Metallicities

- Understanding effect of metallicity is crucial
- Observations of mostly unresolved low metallicity dwarf galaxies show: (Hunt+ 2010; Cormier+ 2015, 2019; Polles+ 2019)
 - Harder radiation fields
 - Bright, extended [OIII] emission
 - Porous structure

Our approach: use the Small Magellanic Cloud (1/5 Z_{\odot}) to determine the **resolved** properties of the ionized gas

The N76 Wolf-Rayet Emission Nebula

- Simplest region in sample: roughly spherically symmetric with a single ionization source
- AB7: a WN4 + O6 binary (Shenar+ 2016)
 - T∗ = 105,000 K
 - L = 10^{6.1} L_{\odot}
- Spitzer/IRS and Herschel/PACS spectroscopy

Spitzer/IRS spectrum

Emission Line Images

- Construct images through CUBISM (Smith+ 2007a) and PAHFIT (Smith+ 2007b)
 - ≈2-3 pc resolution

Emission Line Images

- Construct images through CUBISM (Smith+ 2007a) and PAHFIT (Smith+ 2007b)
 - ≈2-3 pc resolution

Emission Line Images

- Construct images through CUBISM (Smith+ 2007a) and PAHFIT (Smith+ 2007b)
 - ≈2-3 pc resolution
- Cloudy photoionization modeling (Ferland+ 2017) conditions:
 - PoWR stellar atmosphere models for AB7's SED (Todt+ 2015)
 - 8 pc wind-blown cavity required by data
 - SMC abundances
 - Constant density
 - Only modeling HII region (not PDR)

Method: match radial brightness of the spatially resolved emission lines to projected values from Cloudy

Results of Photoionization Models

- Constant density Cloudy models of $n_H \approx 4 16$ cm⁻³ reproduce the ionized gas (E_{ion} > 13.6 eV) emission lines well
 - Density (n_H) is very well constrained compared to integrated intensity measurements

Modeling the **spatially** resolved emission yields much more information than **unresolved** modeling

- [OIII] is the brightest line, similar to other work (e.g., Cormier+ 2015, 2019)
- Diffuse emission from [SIII], [NeII], and [NeIII]
 100 pc away from AB7 may indicate photon leakage from N76

Results of Photoionization Models

- Constant density Cloudy models of $n_H \approx 4 16$ cm⁻³ reproduce the ionized gas (E_{ion} > 13.6 eV) emission lines well
 - Density (n_H) is very well constrained compared to integrated intensity measurements

Modeling the **spatially** resolved emission yields much more information than **unresolved** modeling

- [OIII] is the brightest line, similar to other work (e.g., Cormier+ 2015, 2019)
- Diffuse emission from [SIII], [NeII], and [NeIII]
 100 pc away from AB7 may indicate photon leakage from N76

Neutral gas in N76

- Ionized gas contribution to neutral lines (E_{ion} < 13.6 eV)
 - [Sill]: 90%, assuming δ≈-0.5
 (Tchernyshyov+ 2015, Jenkins+ 2019)
 - [CII]: 3%
 [OI]: 14%
 C and O are in other phases
- H₂ S(1) traces warm gas (E/k ~ 1000 K)
 - CO (2-1) from ALMA/ACA (Tokuda+ 2021) traces colder gas
- Powerful winds and strong photoionization: N76 feedback

- Contribution from other lines at a nearby wavelength?
 ➤ Nearest line with a reasonable energy is [OIV] at 25.91 µm
- 2. Velocity shifted [OIV] emission?

➢ Requires v≈7600 km/s, stellar winds are v≈2000 km/s (Shenar+ 2016)

3. Dust destruction from WR/O stellar winds?
 > Requires replenishing ≈1.5 × 10⁻³ M_☉ of S⁰ every 1.2 years

The N66/NGC 346 Region

[SIII] 33 µm

Work done by undergraduate at UMD: Daniel Stapleton

Complements JWST program: **GTO 1227** - NGC 346: Star Formation at Low Metallicity in the Small Magellanic Cloud (PI: M. Meixner, 29 hours)

SOFIA: Velocity resolved [CII] in the SMC

- Velocity resolved data can determine the origin of [CII] emission (e.g., Tarantino+ 2021)
- [CII] profile closer to CO than HI
 - Large component of CO-dark molecular gas likely (e.g., Lebouteiller+ 2019)

Summary and Conclusions

- Spatially resolved emission lines yield much more information than integrated quantities
- Photoionization models predict the intensity and distribution of most ionized gas emission lines in N76
 - Production of [SI] remains a mystery
- Continuing to model the SMC will reveal how HII region properties change across a galaxy
- JWST will be able to observe many of the emission lines in this work, up to 28.5 μm

Many synergies in the infrared with JWST and SOFIA together!

Thank you!! Any questions?

Feel free to contact me at: ejtino@astro.umd.edu

BACKUP SLIDES

Conditions in N76

Velocity distribution of CO clumps

"Strip" profiles non spherical symmetry

